Chapter 6

THE BINOMIAL THEOREM

In Chapter 1 we defined ( ?] as the coefficient of a™'b" in the expansion of (a + b)", and

tabulated these coefficients in the arrangement of the Pascal Triangle:

n Coefficients of (a + b)"

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

n

We then observed that this array is bordered with 1's; that is, ( 8] =1 and [
n

) =1 forn=

0,1, 2, .... Wealso noted that each number inside the border of 1'sis the sum of the two closest
numbers on the previous line. This property may be expressed in the form

g )

This formula provides an efficient method of generating successive lines of the Pascal Triangle,
but the method is not the best one if we want only the value of a single binomial coefficient for a

large n, such as ( 120] . Wetherefore seek a more direct approach.

It is clear that the binomia coefficientsin a diagonal adjacent to adiagonal of 1's are the
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numbersl, 2, 3, ... ; that is, ( 2] = N. Now let us consider the ratios of binomial coefficients
to the previous ones on the same row. For n = 4, theseratios are:
2 4/1, 6/4 = 3/2, 416 = 2/3, 1/4.
For n =5, they are
3 5/1, 10/5=2, 10/10 =1, 5/10 = 1/2, 1/5.
Theratiosin (3) have the same pattern asthosein (2) if they are rewritten as
5/1, 412, 3/3, 2/4, 1/5.

It is easily seen that this pattern also holds on the line for n = 8, and that the coefficients on that
line are therefore:

8 87 876 8765
(4) 1, 2, 8.f 875 8703

1121231234
The binomial coefficient [ 2] - %g can be rewritten as

87654321 _ 8
12354321 35

. g8 8 g8\ 8
Similarly, (2] " g ( 4] S aar

: . n
This leads us to conjecture that [ r] =

n!

m holdsin al cases. We prove this by

mathematical induction in the following theorem.

THEOREM: If nandr areintegerswith 0 < r < n, then

(n] _ n!
r ri(n - !’

Proof: If n=0, the only allowable value of r is0 and (8] =1. Since
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n! o
r'(n - r)! oo

the formula holds for n = 0.

Now let us assume that it holdsfor n= k. Then

[ k) _ k! [k] _ K
r-1 (r-Dik - r + ) Lr rik - !

Using (1), above, we now have

(k+1]:[ k]+(k]: k! . K
r r-1 r r -k -r + 1) ri(k - r)!

_ Kir . Kk -r + 1)
(r - Dir(k - r + 1)! rk -k -r +1)

_K(r +k-1+1)
r(k - r + 1!

_ Kk +1)
r(k - r + 1!

_ (k+ 1y
ik - r + D

Since the formula

[ k+1] _ (k + 1)!
r r(k - r + !

isthe theorem for n = k + 1, the formulais proved for all integers n > 0, with the exception that
our proof tacitly assumes that r is neither O nor k + 1; that is, it deals only with the coefficients
inside the border of 1's. But the formula

[ k+1) _ (k + 1)!
r r(k - r + !
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k+1 k+1) . (k + 1)!
and s — 2 =
shows that each of [ 0 ] (k+1] Ok + 1)

Hence the theorem holds in all cases.

The above theorem tells us that the coefficient of x'y* in (x + y)" is

n!

ris’

Since this expression has the same value when r and s are interchanged, we again see that the
binomial coefficients have the symmetry relation

BN
r n-rl
By writing out the factorials more explicitly, we see that

( n] n!
r r'(n - r) !

_nn - -2.n-r+Hn -nNn -r - 1)..21
1:23.rn -nN(n -r - 1)..21 '

Cancelling common factors, we now have

[n] _nn-PYn -2) ... (n-r + 1)
r 123 .. r '

Thisisthe aternate form of the theorem illustrated for n = 8 in (4), above.

We can now rewrite the expansion of (a + b)" in the form
(@+b"=a"+na"b + nn -1 _Zl)a“b2 -
1.

+n(n -1..(n-r + :I-)anfrbr + .+ p"
1.2 ...r

Thislast formulait generally called the Binomial Theorem.
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The formulas

() -2 (1) - e o

enable us to extend the definition of ( ?] , previoudly defined only for integersn and r with

0 < r < n, toalow nto beany integer. We then have, for example, (g] =0, ( _72] =

It can easily be shown that the formula

PARHE Y

holds with the extended definition as it did with the original definition.

Now the identity

Z(rn]+(m]:Z—m(m_l)+m:m2—m+m:m2
2 1 2

holds for al integers m, and we can use the formulas
HEHRHEERNEEY
+ + + ...+ =
1 1 1 1 2
HEFRHEER R
+ + + ...+ =
2 2 2 2 3

to show that



I
>
w +
H
N—————
+
N
>
N+
H

|

_ 2(n +nin - 1) (0 + Dn
6 2

2n® - 2n N 3n? + 3n
6 6

2n® + 3n? + n
6

_n(n + 1)(2n + 1)
5 :

Frequently in mathematical literature a short notation for sums is used which involves the Greek
capital letter sigma, written y~  In this notation,

v 3y .t
iswritten as
n
) a
i=1
and the auxiliary variablei is caled the index of summation. Thus, for example,
5
 i=1+2+3+4+5=15
i=1
6
 1-1+1+1+1+1+1-6
i-1
nl— 1

Z j2=12+22+ 3+ ... +(n- 1>
iT1

Under the capital sigma, one indicates the symbol that is used as the index of summation and the
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initial value of thisindex. Above the sigma, one indicates the final value. The generd

polynomia ax" + ax" '+ .. + a ,x + a, of degreen canbewrittenas

One easily sees that

since
Ya+Yb-=(@-+a+.+a)+{b +b+..+b)
i-1 i-1
(@ +b)~+(@ +b)+..+( +b)
> (& + b

i=1

n

n
Also, Y (ca) = cY_ a, theproof of whichis|eft to the reader. However,
i=1 i=1

£50] S

i=1 i=1

as can easly be shown by counterexample. (See Problem 19 of this chapter.)

A corresponding notation for products uses the Greek letter pi:
n
_Hl a=-aa .. a.

n
Inthisnotation, n! for n > 1 canbeexpressedas [] k
k=1

In solving problems stated in terms of the sigma or pi notation, it is sometimes helpful to
rewrite the expression in the original notation.
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Problemsfor Chapter 6

1. Find each of the following:

(@ The coefficient of x*y™ in (x + y)%.
(b) The coefficient of x°in (1 + X)*.
(c) The coefficient of x3y™ in (2x - y)*.

2. Find each of the following:

(@) The coefficient of a**b* in (a + b)*.
(b) The coefficient of a'* in (a - 1)™.
(c) The coefficient of a®h®in (a - 3b)*.

3. Findintegersa, b, and ¢ such that 6(2] =n3 + an? + bn + ¢ forall integersn.

4. Find integersp, g, r, and s such that 4!( 2] =n*+pn®+qgn? +rn + s foral

integers n.

5. Provethat (2) =0forn=0,1, 2.

6. Given that k is a positive integer, prove that (E] =0forn=0,1, ..,k-1

7. Find ( ‘1] forr =0,1,2 3,4, and 5. .
r

8. Find ( _2] forr -0, 1 2 3 4 and 5. |
r

9. Provethat ( }3] = (—1)r( r;2] forr =0, 1, 2, ....
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10.

11.

12.

13.

a

14.

15.

16.

17.

18.

Prove that ( _4] = (—1)r( r;3] forr =0, 1, 2, ...
r

e o -m| .
Let m be a positive integer and r a non-negative integer. Express ( ] ] interms of a

binomial coefficient ( E] with 0 < K < n.

In the origina definition of ( ?] asabinomial coefficient, it was clear that it was always an

integer. Explain why thisis still true in the extended definition.

Show that ey n for integers a, b, and n, with
a b alb!(n - a - b)! = T ’

>0, b>0 andn=>a+ b

Giventhatn=a+ b+ c+dandthat a, b, ¢, and d are non-negative integers, show that

ST e

n
Express Y [a + (k - 1)d] asapolynomid inn.
k-1

n
Express II (2k) compactly without using the II notation.
k=1

n n-1
Show that I1a = Ila,,.
k=1 i=0

n-2 n
Showthat Y b, = ) b .
k i-3

-1
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19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

2 2
Evaluate Zq) Y b
i1 i-1
n n n
Showthat | Ta|| b| - TI(ab).
i-1 i-1 i-1

n
Prove by mathematical induction that ) (
i=0

n .
Prove that Z(S+J) :[s+1+n).
ji-o\ ) n

n-2
Expre$ Z @

k=1

n-2 k " 1
Express ( 1] asapolynomial inn.
k=1

asapolynomid inn.

i RN

always an integer to give a new proof that n(n? + 5) is an integra multiple of 6 for all

integers n.

(a) Write 4![( 2] +[ g] +( 2] +( 2” asapolynomid inn.

(b) Show that n* - 2n® + 11n* + 14nisanintegral multiple of 24 for al integers n.

Find numberssandt suchthat n*=n(n- 1)(n-2) + sn(n- 1) + tn holdsforn=1and n= 2.

n n .
for al integersn.
oo 5) o 3) o

n

Find numbers a and b such that n® = 6( 3

S+i
S
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2
and ) (ab,) and show that they are not always equal.
i=1

) .

asapolynomid in n, and then use the fact that (



29.

30.

31

32.

33.

37

Find numbersr, s, and t such that n*=n(n- 1)(n- 2)(n-3) +rn(n-1)(n- 2) + sn(n- 1) + tn
forn=1, 2, and 3. Using thesevaluesof r, s, and t, show that

nt =24 " v M| i2g M| o
4 3 2 1
Find numbers a, b, ¢, and d such that
N5 - 5l nf fnp Jnl . {n . d n .
5 4 3 2 1

n
Express Y k* asapolynomia in n.
k=1

for al integers n.

n
Express Y k® asapolynomia in n.
k-1

Wedefineasequence S, S, S, ... asfollows: When nisan eveninteger 2t, let

t - t .
ST Syt z%[:ij] Whennisanoddinteger 2t + 1, let S = S, ,, = Z%[t;%j”]-
j= £

Provethat S, + S,,; =Sy, and S, + Sy, =S fort=0,1, 2, ...

. For the sequence defined in Problem 33, prove that S, is the Fibonacci number F ;.

. Prove the following property of the Fibonacci numbers:

n n )
Z [ . ) (-1) I:s+2n—2j - I:s+n'
ji=o\}J
Prove an analogue of the formula of Problem 35 for the Lucas numbers.
Find a compact expression, without using the sigma notation, for
In+2n-1)+3(n-2) +- +(n-1)-2+n1,
n-1
that is, for Y (k + 1)(n - K).

k=0
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